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Abstract  

As the frequency of significant market disruptions rises, retailers are forced to respond through resilience 

activities which often comes at the cost of sacrificing operational efficiency. To alleviate this resilience-

efficiency trade-off, retailers increasingly rely on digital technologies, particularly artificial intelligence 

(AI). Specifically, they are employing AI-based algorithm prescriptions to guide humans in operational 

decision-making, aiming to improve resilience while maintaining high efficiency. In our field study 

involving 341 stores of a large European retailer, we examine the effects of human-AI collaboration on 

this resilience-efficiency trade-off. Our results indicate that human adjustments of algorithm 

prescriptions regarding supply strategy factors (i.e., delivery frequency and delivery pattern) can 

intensify the trade-off. However, if organizational experience and product differentiation are high, 

adjusting algorithm prescriptions helps to reduce the conflict between resilience and efficiency. For 

practice, we offer important implications on how firms can leverage the potential of AI-based tools in 

retail stores to become both resilient and efficient. 

 

Keywords: Algorithm Prescriptions, Human Adjustment, Efficient Resilience, Retail Management. 

1 Introduction 

Nearly 40% of all German retailers increasingly struggle with disruptions stemming from several 

sources (Ifo Institute, 2023). For example, global crises have changed customers’ channel preferences 

making demand more volatile, and have amplified product harm problems and capacity breakdowns, 

leading to escalated demand and supply-side disruptions. Altogether, those disruptions impose increased 

uncertainty levels for retail businesses, forcing them to change structures and processes to make them 

more resilient against any type of disruption. Resilience describes the adaptive ability of a system to 

respond to and recover from disruptions (Tukamuhabwa et al., 2015). However, increasing resilience 

typically comes at the cost of sacrificing the efficiency of a system. Arguably, in order to respond 

flexibly to disruptions, additional resources for redundant systems or surplus logistics capacity are 

needed, causing efficiency losses due to increased input levels (e.g., costs) (Ivanov, 2022). In an effort 

to be resilient, a firm might also impose restrictions on its outputs. For example, it may choose not to 

take on every customer order or may limit the range of products offered, leading to decreased outputs 
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(e.g., sales). Thus, particularly in the retail context, recent studies highlight the challenge to manage this 

trade-off between resilience and efficiency and hence to minimize the efficiency losses associated with 

resilience activities (Auf der Landwehr et al., 2023; Shen and Sun, 2023).  

To address this challenge, there is a common trend to support operational decision-making processes by 

relying on digital technologies such as artificial intelligence (AI). Specifically, retailers are utilizing 

algorithm prescriptions for operational decisions in the hope of increasing resilience while preserving 

high efficiency. In this context, AI often takes on an augmenting role, e.g., by generating 

recommendations to assist human decision-makers. For example, retail stores use AI tools that prescribe 

the optimal store supply strategy (i.e., delivery frequency for pre-ordered products). This outcome 

enables the efficient management of resilience activities by determining a delivery strategy that ensures 

continuous availability of product assortments to meet customer demand at the lowest cost and hence 

minimum waste of personnel and logistics resources. However, no study so far has explored whether 

such human-AI teams, defined as collaborative partnerships where humans and AI systems work 

together, are indeed capable of mitigating the conflict between resilience and efficiency or even 

worsening it.  

Over the past two decades, resilience research has delved into AI solutions to foster, maintain, and 

enhance resilience while achieving efficient operations. For instance, Belhadi et al. (2024) underscore 

AI’s impact on enhancing resilience without further efficiency losses through improved information 

processing capabilities. Subsequent studies (e.g., Gupta et al., 2023) have probed how using AI in supply 

chains bolsters the efficiency of resilience activities by eliminating superfluous resources. Furthermore, 

these studies highlight that AI-driven analyses elevate decision-making speed and accuracy in crisis 

situations, thus aiding both resilience and efficiency. Despite these promising findings, existing 

literature is limited by its lack of accounting for the human aspect of AI technology deployment, 

highlighting a significant research gap in the resilience literature. Lindebaum et al. (2020) point out the 

risk of using AI-based technologies without understanding their interplay with humans. This oversight 

is notable, given the vastly different outcomes of human-AI collaboration compared to the use of AI 

alone as demonstrated by a recently emerging stream of studies on human-AI interaction outside the 

resilience context (Jussupow et al., 2024). 

On the one hand, studies highlight that AI, due to its advanced data processing and pattern recognition 

capabilities, can enrich human capabilities, leading to powerful human-AI teams (Balasubramanian et 

al. 2022; Jain et al., 2021; Krakowski et al., 2022) that can outperform humans and AI alone. In the retail 

industry, the study by Revilla et al. (2023) on human-AI collaboration in demand forecasting indicates 

that human intervention in AI solutions may lead to efficiency losses, especially if rapid decisions are 

required. This perspective suggests that adhering to algorithm prescriptions without adjusting them 

could empower retail stores to respond to unexpected disruptive events with less efficiency sacrifices. 

In contrast, other studies show the negative effects of human adherence to AI recommendations. If 

humans always conform to algorithm prescriptions, they may forego the possibility of replacing 

insufficient or incomplete algorithm information through superior human knowledge (Kesavan and 

Kushwaha, 2020; Sun et al., 2021). The study by Loske and Klumpp (2021) on human-AI collaboration 

in route planning in retail logistics demonstrates that human adjustments positively influence efficiency, 

as it considers factors that may not be fully captured by AI, such as customer preferences intricacies. 

From this perspective, conforming to AI solutions could also cause additional inefficiencies when 

implementing resilience activities instead of reducing inefficiencies. Hence, for promptly responding to 

unexpected disruptions, deviating from the prescription could be beneficial in order to adjust the 

suboptimal algorithm solutions that would otherwise lead to insufficient processes generating additional 

costs. Given these inconclusive perspectives, understanding whether humans should adhere to or adjust 

AI solutions in the face of disruptions to alleviate the resilience-efficiency trade-off is crucial. This 

knowledge helps to identify beneficial forms of collaboration between employees and AI technologies 

that allow for achieving high resilience and high efficiency simultaneously. To address this gap, we 

formulate our first research question:  

RQ1: How does human-AI collaboration (i.e., human adherence to or adjustment of algorithm 

prescriptions) influence the resilience-efficiency trade-off for retail stores?  
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Recently, research across fields has explored the deployment of AI-driven technologies for different 

business functions (Kuhn et al., 2021; Sun et al., 2021). Their results show that the benefits of these 

technologies vary depending on boundary conditions. This is particularly relevant for retail stores, which 

face challenges due to internal dynamics and market complexities (Grewal et al., 2020; Ivanov and 

Dolgui, 2018). Internal dynamics are connected to resource-driven characteristics like organizational 

experience, while market complexities are primarily linked to consumer-driven characteristics such as 

product differentiation. Studies have begun to investigate these boundary conditions in human-AI 

collaboration (e.g., Jia et al., 2023) and in resilience research (e.g., Wamba et al., 2020). However, their 

findings lead to mixed results. Therefore, these boundary conditions are crucial and must be considered 

when optimizing human-AI teams towards the resilience-efficiency trade-off. Hence, as a second 

research question, we ask: 

RQ2: How do boundary conditions (i.e., organizational experience, product differentiation) influence 

the relationship between human-AI collaboration and the resilience-efficiency trade-off? 

For quantifying the resilience-efficiency trade-off, robust Data Envelopment Analysis (RDEA) has been 

established as a state-of-the-art technique in the literature (Arabmaldar et al., 2024; Toloo et al., 2022). 

RDEA combines the common DEA’s output-to-input efficiency measurement with robust optimization 

techniques to model the resilience of a system in terms of its robustness after output-and-input 

disruptions. Thus, RDEA measures the resilience-efficiency trade-off as the efficiency loss associated 

with achieving a certain level of resilience. Drawing on the augmentation capabilities framework (Helfat 

et al., 2023), we examine how human-AI collaboration can shift the resilience-efficiency trade-off by 

utilizing a dataset from a large European grocery retailer that uses AI-generated prescriptions for store 

supply strategies. 

Our study provides important theoretical and practical implications. We unveil the role of human-AI 

collaboration in influencing the efficiency losses due to resilience activities, highlighting that, in general, 

deviations from algorithm prescriptions reinforce the trade-off. While this insight is alarming, we show 

that such deviations are not always bad. We identify boundary conditions (i.e., high organizational 

experience, high product differentiation) in which adjusting AI solutions can be desirable in terms of 

reducing efficiency losses of resilience activities. In doing so, we advance the augmentation capability 

framework by introducing important contingencies that inform firms on how to leverage AI tools to 

achieve both resilient and efficient systems. 

The paper is structured as follows: Initially, we introduce our theoretical background and the state of 

research regarding the resilience-efficiency trade-off and human adjustments of algorithm prescription. 

Subsequently, we develop hypotheses and present our research model, which is then tested using a 

unique real-world dataset from grocery retail stores. For this purpose, we outline the data description, 

describe RDEA as our approach for calculating our dependent variable resilience-efficiency trade-off, 

and outline our Tobit regression model for hypothesis testing. The results are presented next and then 

discussed. We complete the paper with theoretical and practical implications, limitations, and future 

research directions. 

2 Theoretical Background and Related Work 

Our theoretical framework draws on the resource-based view (RBV) which has been pivotal in 

explaining a firm’s economic efficiency and resulting competitive advantage (Barney, 1991). This 

theory has recently been introduced to resilience research (e.g., Brandon-Jones et al., 2014), as it allows 

to delve into how firms can leverage their unique resources and which capabilities behind the resources 

are valuable to navigate challenges and maintain performance (Helfat et al., 2023). RBV contends that 

the existence or absence of valuable, rare, inimitable, and non-substitutable strategic resources supports 

or impedes competitive advantages (Wernerfelt, 1984). The traditional view holds that competitive 

advantages are particularly created by human resources due to their low fungibility and scalability 

(Helfat and Peteraf, 2015). The latest advancements of the theory show that new bundles of resources 

are being created if humans possess augmentation capabilities, allowing them to combine their own 

human resources with AI information (Krakowski et al., 2022). This means that firms should turn away 
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from the traditional understanding of human capital and acknowledge that the augmentation capabilities 

of humans in collaboration with AI are the decisive factor for creating unique and sustainable advantages 

(Helfat et al., 2023). Human limitations regarding cognitive capabilities can be compensated by 

augmentation capabilities that enable employees to leverage AI resources. We employ the new concept 

of augmentation capabilities for elaborating whether, and under which conditions human-AI teams can 

mitigate the resilience-efficiency trade-off, as human-AI collaboration settings reflect exactly an 

augmentation of human capabilities. 

2.1 Resilience-efficiency trade-off 

Resilience has become increasingly important due to the rapid proliferation of unexpected disruptive 

events. Resilience denotes the ability to respond to such disruptions in a way that a system remains 

robust and stable despite such adverse events (Tukamuhabwa et al., 2015). Extant literature frequently 

highlights a conflict between resilience and efficiency with efficiency reflecting the ratio of outputs 

produced to inputs deployed (Auf der Landwehr et al., 2023; Shen and Sun, 2023). The studies 

emphasize that quickly responding to disruptions is associated with additional costs for activities that 

assure flexibility and redundancy in assets such as capacity reservations and safety stocks, all causing 

decreases in efficiency (Ivanov et al., 2014). Moreover, the fact that resilience requires redundancies to 

maintain the flow of goods, and information conflicts with business practices such as lean approaches 

(Ivanov, 2022) that focus on the elimination of all types of waste within a company. In addition, being 

forced to respond to disruptive events poses additional constraints in managing resources, leading to 

fewer degrees of freedom in deploying inputs and outputs and hence efficiency losses (e.g., if not every 

customer order can be fulfilled). Thus, higher resilience often comes at the cost of lower efficiency 

through higher amounts of inputs needed (e.g., employees) or fewer outputs (e.g., sales) generated.  

Building on the previous argumentation, the resilience-efficiency trade-off reflects the loss of efficiency 

associated with achieving high resilience. As we outline in more detail in the methodology section, for 

quantifying this efficiency loss we rely on RDEA as a well-established technique (Arabmaldar et al., 

2024; Toloo et al., 2022). While DEA is a state-of-the-art method for measuring the output-to-input 

efficiency of a system, robust optimization is highly appropriate for modelling the resilience of a system 

after output-and-input disruptions. RDEA allows firms to determine how strong efficiency is 

“penalized” when implementing resilience activities. Based on the theoretical arguments provided 

above, we argue that augmenting human resources with AI resources for decision-making can influence 

the trade-off as it might influence the amounts of inputs or outputs related to resilience activities.  

2.2 Human adjustment of algorithm prescriptions 

The integration of AI-based technologies into business operations is becoming more prevalent to gain 

competitive advantages. Such technologies facilitate the generation of massive amounts of data and 

enable the analysis of this data with high accuracy and speed allowing the optimal use for data-driven 

decision-making (Agrawal et al., 2019). Thus, AI-based data analytics are highly suitable for operational 

decision-making in the retail context allowing to improve the quality of decision-making outcomes, 

resulting in increased operational efficiency (Belhadi et al., 2024). For instance, algorithm prescriptions 

are used regarding picking processes to achieve efficient picking operations (Sun et al., 2021) or 

transportation processes to optimize delivery cycles (Kuhn et al., 2021). In particular, for store supply 

strategies, prescriptions for delivery frequencies, (e.g., three deliveries per week) as well as delivery 

patterns (e.g., Monday-Wednesday-Friday) are the most prevalent forms of algorithm prescriptions. 

These delivery-related decisions require a consideration of many fluctuating and competitive factors 

(e.g., personnel, demand, truck utilization, etc.) that store employees might struggle to fully grasp and 

incorporate into their decision-making process due to their limited cognitive capabilities. Hence, 

algorithm prescriptions are an increasingly popular form of decision-making configurations that involve 

AI to support employees. Such prescriptions can be adhered to or adjusted by humans which can lead 

to different outcomes. Therefore, researchers have just recently started to investigate the impact of 

human adjustments of algorithm prescriptions on operational efficiency in retail contexts (Revilla et al., 
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2023; Loske and Klumpp, 2021). However, no study so far has examined whether such adjustments of 

AI solutions through deviating from algorithm prescriptions can change the efficiency losses associated 

with resilience activities. Moreover, recent studies highlight that organizational boundary conditions 

determine the (beneficial or detrimental) impact of AI-based technologies. However, research is needed 

regarding the conditions that can leverage the benefits of human-AI teams, especially in retail contexts. 

This is why we explore two critical boundary conditions: organizational experience and product 

differentiation. 

Regarding experience, Jia et al. (2023) show that the effect of human-AI collaboration in a telemarketing 

context is dependent on employee experience. This impact extends beyond individual experience to 

encompass team experience, a dimension that is unexplored in current literature (Nyberg et al., 2014; 

Krakowski et al., 2022). In retail contexts, where store operations are conducted by teams of store 

employees orchestrated by store managers, the collective experience plays a crucial role in the 

effectiveness of human adjustments of AI solutions, highlighting a significant gap in understanding the 

moderating effect of the experience on the team level. 

Regarding product differentiation as the second boundary condition, research has shown that different 

consumer-driven aspects may severely shape the impact of human-AI collaboration but has provided 

mixed results. On the one hand, a higher variety of product assortments increase complexity which 

yields negative moderating effects on the impact of human deviation in bin packing processes on 

performance due to humans limited cognitive capabilities (Boyacı et al., 2023; Sun et al., 2021). 

Resilience studies also suggest the negative moderating effects of complex and dynamic conditions on 

the impact of AI on operational efficiency (Wamba et al., 2020). On the other hand, product variability 

has been found to positively moderate the impact of human adjustments in product planning contexts 

due to the adaptability in the fulfilment of customer needs (Elmaghraby et al., 2015; Khosrowabadi et 

al., 2022). Due to the stronger integration of online and offline channels, grocery retail entails increasing 

assortment variability which could increase the flexibility of responding to changes in customer 

demands. Therefore, we also explore the moderating role of product differentiation for the impact of 

algorithm adjustments. 

3 Hypotheses Development 

3.1 The effect of adjusting algorithm prescriptions on the trade-off 

According to the latest view of the RBV, a competitive advantage can be achieved when humans use 

their augmentation capabilities in collaboration with AI so that new unique bundles of resources are 

created (Krakowski et al., 2022). This augmentation capability view of the RBV suggests that humans 

need to recognize situations in which they could complement their cognitive capabilities by relying on 

algorithm prescriptions. For example, situation-specific decisions of retail stores about the optimal 

frequency and pattern of delivery of goods to the stores are settings where the (limited) cognitive 

capabilities of employees can be augmented by AI-based data analytics (Belhadi et al., 2024). 

Specifically, employees could reduce efficiency losses due to resilience activities by using AI 

capabilities to quickly and accurately identify the most effective response strategies that firms should 

realize, thereby minimizing the response time and avoiding wasting additional (unnecessary) inputs such 

as personnel and logistics costs on less effective activities. Therefore, if employees deviate from 

algorithm prescriptions for delivery frequency and delivery pattern, the costs of resilience may increase 

due to a loss of optimality in input and output levels. For example, a downward deviation from the 

optimal delivery frequency could decrease generated outputs (e.g., sales) due to missing products. In 

contrast, too high delivery frequency or an unfavorable delivery cycle can mean that employees in the 

stores cannot handle the amount of delivered goods and thus too many goods cannot be offered on time 

to customers or may even be lost. Additionally, as algorithm prescriptions perform independent of 

humans’ physical and emotional conditions, a deviation from such prescriptions would disturb a 

constant allocation of personnel resources hindering firms from stabilizing operational processes in the 
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face of disruptions and making it more difficult to achieve both efficient and resilient systems. Hence, 

as a baseline, we expect: 

H1: Human adjustments of algorithm prescriptions for (a) delivery frequency and (b) delivery pattern 

worsen the resilience-efficiency trade-off. 

3.2 The moderating role of organizational experience 

A current discourse within the RBV framework centers around how augmentation capabilities manifest 

in human-AI collaboration settings (Krakowski et al., 2022). However, so far, this perspective does not 

fully account for the nuanced manifestations of these capabilities. Specifically, it overlooks the dual 

pathways through which augmentation can unfold: First, the augmentation can be reflected in the 

conscious decision to let AI substitute human (limited) cognitive capabilities if humans adhere to the 

algorithm prescription. Second, the augmentation can occur if humans deviate from algorithm 

prescription and complement AI capabilities with human capabilities as prescriptions are used as a 

baseline but adjusted through human discretion (Khosrowabadi et al., 2022; Sun et al., 2021). As 

literature highlights the relevance of boundary conditions, we assume that the effectiveness of these 

different forms of augmentation capabilities depends on organizational contingencies, an aspect yet 

unexplored in the augmentation capability view of the RBV. Therefore, we advance the augmentation 

capability approach by investigating how organizational conditions shape human-AI augmentation's 

success. 

In H1 we have proposed that substituting human decisions through AI prescriptions (and not adjusting 

these prescriptions) is desirable for mitigating the trade-off. In the case of high organizational 

experience, however, we suggest that adjusting the algorithm prescription will be less detrimental or 

even beneficial. We argue that employee teams can complement AI capabilities with their idiosyncratic 

knowledge, especially in understanding the intricacies of customer behavior and preferences, that AI 

does not have in the decision-making process (Fügener et al., 2021). Organizational experience plays a 

pivotal role in this process, as it reflects the organizational level of knowledge and skills created through 

repeatedly performing tasks during a specific period (Argote et al., 2021). This metric is often captured 

by the overall duration of employment of the members belonging to a store team. Hence, by adjusting 

algorithm prescriptions, highly experienced employee teams can create superior resource bundles 

(Sirmon et al., 2007) that can be leveraged to create the most efficient solution in the presence of 

disruptions. Their deep, accumulated knowledge enables them to early identify critical processes and 

suitable changes needed and allows them to replace suboptimal algorithm prescriptions with more 

feasible solutions for responding to disruptions which can reduce failures and wasted resources. 

Consequently, adjusting AI solutions can better avoid increased inputs (e.g., logistic costs) and output 

losses (e.g., sales drops) leading to lower efficiency losses through resilience activities. Accordingly, 

we expect that the undesirable impact of humans’ adjustments of AI prescriptions (i.e., for delivery 

frequency and delivery pattern) on the resilience-efficiency trade-off is alleviated in stores with higher 

organizational experience. Therefore, we hypothesize: 

H2: Human adjustments of algorithm prescriptions for (a) delivery frequency and (b) delivery pattern 

have a less detrimental effect on the resilience-efficiency trade-off in stores with higher organizational 

experience than in stores with lower organizational experience.  

3.3 The moderating role of product differentiation 

While high organizational experience might ensure that adjustments of algorithm prescriptions may lead 

to better outcomes that alleviate the resilience-efficiency conflict, we next identify conditions that make 

an adjustment leading to suboptimal solutions less problematic. Specifically, we suggest that in the case 

of higher product differentiation, the detrimental impact of adjusting optimal algorithm prescriptions 

(for delivery frequency and delivery pattern) can be bolstered. Retail stores with highly differentiated 

assortments can serve different and volatile customer demands (Besbes and Sauré, 2016). With a higher 

number of variants within product categories, customers have more opportunities to substitute products 

(if a product is not available due to disruptions). In addition, stores with larger and more differentiated 
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assortments are typically patronized by households with higher income and hence lower price sensitivity 

in times of economic shocks (Wakefield and Inman, 2003). Consequently, in such stores, suboptimal 

delivery frequency and delivery patterns due to adjustments of algorithm prescriptions are less 

detrimental as a store’s output (e.g., sales) can still be increased due to higher flexibility in satisfying 

customer needs and responding to demand fluctuations through a large choice of (premium) products. 

We, therefore, hypothesize the following:  

H3: Human adjustments of algorithm prescription for (a) delivery frequency and (b) delivery pattern 

have a less detrimental effect on the resilience-efficiency trade-off in stores with higher product 

differentiation than in stores with lower product differentiation. 

Figure 1 presents our research framework. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Research framework. 

4 Methodology 

4.1 Data description and algorithm deployment 

We cooperate with a large brick-and-mortar grocery retailer in Europe and our focal units of analysis 
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dataset of the retailer to gain deeper insights into algorithm deployment within actual operational 

settings, offering a comprehensive and authentic view that goes beyond the controlled setting and limited 

scope of experiments or simulations based on artificial datasets. This dataset contains store and sales 

data from the retailer’s management system “AIMS” for a random selection of 341 grocery stores for a 

two-month time window (August and September 2022), a period without public holidays. To alleviate 

concerns of reverse causality we apply a time lag and use the August data (t1) for measuring our 

independent variables (e.g., frequency and pattern adjustments) and September data (t2) to measure the 

dependent variable resilience-efficiency trade-off. Note that we tested different lag structures (e.g., the 

first two weeks of August vs. the last two weeks of September) and the results remained unchanged. 

The retailer has implemented AI-based analytics to support stores in making optimal delivery-related 

decisions. This tool utilizes machine learning approaches based on a large amount of diverse historical 

and real-time data with great speed and accuracy (e.g., sales, customer frequency, store, assortment, and 

store employee data), to calculate the optimal store supply strategy for the non-cooled product 
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For each store, the team is responsible for delivery-related decisions and has the autonomy to decide 
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stores implement the algorithm prescriptions to varying degrees with a substantial number of stores 

deviating from the prescription at least in one week during the focal month (August 2022). Tweaking 

algorithm prescriptions occurs, for example, to account for store-individual factors or unexpected events 
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that AI-based tools cannot recognize, e.g., rigid work times of employees due to personal issues. 

Moreover, allowing discretion to deviate leads to higher acceptance and adoption of the tool. Using the 

AI-based tool, the stores can only determine the delivery frequency and delivery pattern, they cannot 

change the quantities (e.g., due to truck capacity utilization and route optimization). If the stores need 

extra items of non-cooled products that are not considered by the AI-based tool, they have to order 

manually via another system.  

4.2 Measuring the resilience-efficiency trade-off 

4.2.1 Robust data envelopment analysis (RDEA) 

We calculate our dependent variable resilience-efficiency trade-off by using RDEA for the input and 

output data from September 2022. DEA is a non-parametric method for the measurement of the relative 

efficiencies of peer decision systems, in our case retail stores, which transform multiple inputs into 

multiple outputs. DEA identifies the best-practice frontier that defines the most efficient transformation 

of inputs into outputs and then measures the efficiency of all stores against this frontier instead of 

considering average performance. Hence, DEA results are based on comparisons with the most efficient 

stores that operate under similar situations and scales. A store is efficient (i.e., receives an efficiency 

score of 1 or 100%) if it cannot reduce any input while holding the same level of outputs. Otherwise, a 

store is not efficient and receives an efficiency score smaller than 1.  

DEA is a common method in operations research, and in recent years it has also become important in 

IS contexts (Ayabakan et al., 2017). Consider 𝑛 DMUs indexed as DMU𝑗(𝑗 = 1, … , 𝑛) (stores) where 

each unit consumes 𝑚 inputs 𝒙𝑗 = (… , 𝑥𝑖𝑗 , … ); 𝑖 ∈ 𝐼 = {1, … , 𝑚} to produce 𝑠 outputs 𝒚𝑗 =

(… , 𝑦𝑟𝑗 , … ); 𝑟 ∈ 𝑅 = {1, … , 𝑠}. If the input and output data are subject to potential disruptions (and 

hence to uncertainty) to which a store responds through resilience activities, then employing 

deterministic DEA models (i.e., DEA without accounting for disruptions) for measuring the efficiency 

is inappropriate. In this case, decision-makers need to apply a so-called robust DEA approach that 

extends the common DEA framework by incorporating fluctuations in inputs and outputs. Thus, RDEA 

allows to model a system’s resilience in terms of its robustness after input-and-output disruptions. 

Therefore, this study uses RDEA as a state-of-the-art approach for considering disruptions in the inputs 

and outputs of stores and measuring reliable efficiency values that account for these disruptions 

(Arabmaldar et al., 2024; Klumpp et al., 2023; Toloo et al., 2022). By considering different levels of 

possible disruptions as a common approach for modelling disruption effects (e.g., Aldrighetti et al., 

2023), RDEA shows the efficiency losses associated with keeping the system robust despite these 

disruptions (i.e., the efficiency losses incurred for being resilient). Formally, the RDEA model can be 

written as follows (Toloo et al., 2022): 
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𝑥𝛤𝑗
𝑥 + 𝑝𝑗

𝑦
𝛤𝑗

𝑦
+ ∑ 𝑞𝑟𝑗

𝑠
𝑟=1 + ∑ 𝑤𝑖𝑗

𝑚
𝑖=1 ≤ 0𝑠

𝑟=1       ∀𝑗 ≠ 𝑜

𝑢𝑟𝑦̂𝑟𝑗 − 𝑝𝑗
𝑦

− 𝑞𝑟𝑗 ≤ 0                        ∀𝑗, ∀𝑟

𝑣𝑖𝑥̂𝑖𝑗 − 𝑝𝑗
𝑥 − 𝑤𝑖𝑗 ≤ 0                          ∀𝑗, ∀𝑖

𝑞𝑟𝑗 , 𝑤𝑖𝑗 , 𝑝𝑗
𝑦

, 𝑝𝑗
𝑥 , 𝑣𝑖 , 𝑢𝑟 ≥ 0                   ∀𝑖, ∀𝑟, ∀𝑗 

  (1) 

where 𝜃𝑅
∗  is the efficiency score which informs about the portion of inputs that can be saved while 

holding the same level of outputs; 𝑣𝑖 and 𝑢𝑟 are the weights of the 𝑖th input and 𝑟th output, respectively. 

In Model (1) 𝑥𝑖𝑗 = 𝑒𝑥𝑖𝑗 and 𝑦̂𝑟𝑗 = 𝑒𝑦̃𝑟𝑗 are the deviations of inputs and outputs, respectively, in which 

𝑒 represents the percentage of deviations of the uncertain data from their nominal values due to 

disruptions. Hence 𝑒 represents the disruption level of a store. Model (1) measures the robust efficiency 

of a focal store (store𝑜) and specifies the level of disruptions with the robust parameters 𝛤𝑗
𝑥 and 𝛤𝑗

𝑦
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associated with inputs and outputs data. Model (1) contains variables that protect the objective function 

and the constraints against disruptions and measures the robust efficiency of the DMUs. For example, 

the variables (𝑝𝑗
𝑥 , 𝑝𝑗

𝑦
) and (𝑞𝑟𝑗, 𝑤𝑖𝑗) quantify the sensitivity of the inputs and outputs data when the 

level of disruptions changes. Besides, the quantities 𝑝𝑗
𝑥𝛤𝑗

𝑥 + ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 , 𝑗 = 1, . . , 𝑛 and 𝑝𝑗

𝑦
𝛤𝑗

𝑦
+ ∑ 𝑞𝑟𝑗

𝑠
𝑟=1  

leverage the worst-case deviations of the inputs and outputs from their nominal values. Furthermore, the 

pre-defined robust parameters 𝛤𝑗
𝑥(𝛤𝑗

𝑦
) reflect the maximal number of uncertain inputs (outputs) that are 

subject to disruptions (i.e., can fluctuate due to disruptions). In addition, to protect the system against 

input and output disruptions, the objective function value of the robust model is penalized by a loss of 

efficiency compared to the deterministic model. This comparison informs the managers about the 

resilience-efficiency trade-off which is defined in the following part. 

4.2.2 The resilience-efficiency trade-off 

The resilience-efficiency trade-off represents the difference between the deterministic efficiency (i.e., 

efficiency without disruptions) and the robust efficiency (i.e., efficiency after responding to disruptions) 

and can be calculated as follows (Arabmaldar et al., 2024; Klumpp et al., 2023): 

Resilience-Efficiency Trade-off =
𝜃𝑅

∗ (0,0) − 𝜃𝑅
∗ (𝛤𝑗

𝑥, 𝛤𝑗
𝑦

)

𝜃𝑅
∗(0,0)

, ∀𝛤𝑗
𝑥, 𝛤𝑗

𝑦
> 0 (2) 

where 𝜃𝑅
∗ (0,0) is the deterministic efficiency measure of a store, and 𝜃𝑅

∗ (𝛤𝑗
𝑥, 𝛤𝑗

𝑦
) is the robust efficiency 

measure of a store for varying levels of 𝛤𝑗
𝑥, 𝛤𝑗

𝑦
. The trade-off metric provides a clear-cut image of the 

resilience impact on efficiency. For example, let us assume the level of disruption is 5% meaning that 

inputs and outputs fluctuate by 5%. If the resulting resilience-efficiency trade-off is 10%, this means 

that if a store responds to this deviation to keep the system robust, the resulting efficiency loss will be 

10%. 

4.2.3 Inputs and outputs for RDEA and descriptive results 

The following five inputs (I) and two outputs (O) are widely used in the DEA literature for investigations 

of grocery store efficiency (e.g., Neves et al., 2018) and are therefore used in this study for calculating 

efficiency measures:  

Personnel costs (I1) is the salary paid to store employees in the focal month (September 2022). Logistics 

costs (I2) is the store-level costs for retail warehouse order picking and transportation in the focal month. 

Order-picking costs depend on the number of products picked for the store multiplied by a firm-wide 

unified cost rate. Transport costs depend on the number of transport units delivered to the store 

multiplied by a uniform transfer price per transport unit. Frontend space (I3) is the space in square 

meters of a store dedicated for customers to make purchases, excluding the backroom’s square, checkout 

area, and entrance/exit areas. Backend space (I4) is the space in square meters made available for 

backroom operations. It is the space that is separated from the sales area and used to buffer inventory 

for shelf replenishment. Population (I5) depicts store neighborhood characteristics and hence this input 

is considered as a proxy for demand size. For measuring this variable, we combine archival company 

data on the postal code of each store with secondary data from the Federal Statistical Office (2023) 

covering the number of inhabitants living in the catchment area. Sales (O1) is the store sales without 

further adjustments as the circumstances (e.g., taxes) are equal for all observed stores. Number of 

different products (O2) in the store reflects the variety of products offered to customers. Given that all 

products sold through cash desk counters are recorded by the retailers’ merchandise management 

system, the number of products sold is provided by counting unique article numbers passing the cash 

desk.  

The robust and deterministic efficiency measures are calculated using the above-mentioned inputs and 

outputs. Table 1 shows the results (Min, Max, Mean, SD) for the deterministic DEA models, the RDEA 

model (setting the disruption level to 5%) and the resilience-efficiency trade-off. For the deterministic 
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DEA and RDEA model, we give the number of efficient stores (No. Eff. Stores) reflecting the number 

of stores with an efficiency score of one (i.e., maximum efficiency score). Table 1 shows that the average 

efficiency loss for maintaining the resilience of a store is 15.67%. It also shows that some stores can 

achieve resilience without efficiency loss (i.e., exhibit a zero trade-off). 

 Min Max Mean SD No. Eff. Stores 

Deterministic 0.6315 1 0.8894 0.0876 50 

Robust (5% disruption) 0.5319 1 0.7515 0.0974 9 

Resilience-efficiency trade-off 0 18.23% 15.67% 4.10% - 

Table 1.  Efficiency measures and resilience-efficiency trade-off. 

4.3 Model development for hypothesis testing 

Our dependent variable resilience-efficiency trade-off of a grocery store 𝑖 is censored, i.e., it is observed 

within a certain range and observations below or above that range do not exist. In our case, the trade-off 

metric is right censored in the range of {𝑦∗| 0 ≤ 𝑦 ≤ 1}. We therefore use Tobit regression as it has the 

key advantage of being able to handle censored data.  

We define two key independent variables, namely Frequency_Adjustmentt1,i and Pattern_Adjustmentt1,i. 

In line with Sun et al. (2021), we measure Frequency_Adjustmentt1,i as a binary variable that equals one 

if the delivery frequency of store i deviates from the algorithm prescription at least in one week of the 

focal month (t1) and zero otherwise. Consider as an example, a grocery store with an algorithm-

prescribed frequency of three delivery days per week that decides for only two delivery days.  

Pattern_Adjustmentt1,i is a binary variable that equals one if the delivery pattern of store i deviates from 

the algorithm prescription at least once in t1 and zero otherwise. We take delivery pattern adjustment 

into account, as a store can change the delivery pattern without adjusting delivery frequency. As the low 

correlation between both variables shows, this is a regular occurrence. For example, the algorithm for a 

grocery store prescribes a delivery on Mondays, Wednesdays, and Thursdays but the store deviates and 

decides for a Monday-Wednesday-Friday delivery pattern. 

In addition to the independent variables of interest, we consider two moderator variables. Organizational 

experience is captured by the average number of years the employees of a store have been with the 

retailing company (i.e., employee tenure) which reflects the volume of accumulated experience of the 

entire employee team. Product differentiation in the store assortment is captured by the number of 

product variants within product categories adjusted by the prices of each product variant. 

Moreover, we use several control variables to avoid unobserved variance and to isolate the effect of 

algorithm adjustment on the resilience-efficiency trade-off. Failing to control for systematic variance 

can lead to biased estimates and incorrect conclusions. As a first control we consider privatization 

capturing whether a focal retail store is privately owned (=1) by individual merchants or company-

owned (=0) as in the context of grocery retailing, the performance of stores varies according to this 

characteristic. This variability may arise due to differences in management styles, resources, incentives, 

and other factors related to ownership structure. As a second control, we use customer density measured 

as the number of customers present in a store i per sqm of frontend store space on average in the focal 

month. To quantify the number of customers that are present in the store, we use data on the average 

number of sales receipts printed per hour and day. Finally, we incorporate a store-fixed effect 
∑ 𝛾𝑖𝑆𝑡𝑜𝑟𝑒𝑖

𝑛
𝑖=1  to control for unobserved differences between stores that can influence the dependent 

variable, such as differences in customer demographics or characteristics of the area in which the store 

is located, and isolate the effect of other variables on the dependent variable. Finally, ε is the error term 

of our Tobit regression model. The full model is denoted as follows: 

Resilience-Efficiency Trade-off t2,i
∗  = 

β0 + β1𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑡1,𝑖 + β2𝑃𝑎𝑡𝑡𝑒𝑟𝑛_𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡1,𝑖 +  

β3𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑡1,𝑖 × 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑡1,𝑖 + 

(3) 
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β4𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑡1,𝑖 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑡1,𝑖 + 

β5𝑃𝑎𝑡𝑡𝑒𝑟𝑛_𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑡1,𝑖 × 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑎𝑙_𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑡1,𝑖 + 

β6𝑃𝑎𝑡𝑡𝑒𝑟𝑛_𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑡1,𝑖 × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛𝑡1,𝑖 +  

𝛽7𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + ∑ γ𝑖𝑆𝑡𝑜𝑟𝑒𝑖
𝑛
𝑖=1 +  ε  

where, 

Resilience-Efficiency Trade-off𝑡2,𝑖  =  {

0 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑡𝑟𝑎𝑑𝑒 − 𝑜𝑓𝑓𝑡2,𝑖  ≤  0

𝑦∗ 0 < 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑡𝑟𝑎𝑑𝑒 − 𝑜𝑓𝑓𝑡2,𝑖 <  1

1 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 − 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑡𝑟𝑎𝑑𝑒 − 𝑜𝑓𝑓𝑡2,𝑖  ≥  1
 

We provide insights into the correlations between the variables of the Tobit regression model (see Table 

2) to indicate that no multicollinearity issues are present. 

 1. 2. 3. 4. 5. 6. 7. 

1. Resilience-efficiency  

trade-off (t2) 
1       

2. Frequency adjustment (t1) 0.15** 1      

3. Pattern adjustment (t1) 0.27*** -0.12* 1     

4. Experience (t1) 0.28*** 0.02 -0.2*** 1    

5. Differentiation (t1) 0.12* -0.08 -0.04 0.07 1   

6. Privatization (t1) -0.03 -0.05 0.02 -0.05 -0.13* 1  

7. Customer density (t1) -0.02 -0.05 0.04 0.08 0.05 0.12* 1 

Note: *𝑝 < 0.1; **𝑝 < 0.05; ***𝑝 < 0.01 

Table 2. Cross-correlation matrix. 

5 Empirical Analysis and Results 

Table 3 presents the results of Tobit regression for the impact of human adjustments of algorithm 

prescription (i.e., adjustments of delivery frequency and delivery pattern prescriptions) on resilience-

efficiency trade-off. Note that negative estimates are associated with a lower resilience-efficiency 

conflict (i.e., lower efficiency losses) which is desirable for the retail stores, while positive estimates are 

associated with higher efficiency losses meaning undesirable implications. We include our independent 

variables in Model 1 and add the interaction terms separated for organizational experience in Model 2 

and for product differentiation in Model 3. The final Model 4 to test our hypotheses includes all 

independent variables, interaction terms, controls and fixed effects. The results are highly robust across 

all models.  

In Hypothesis 1, we predict that human adjustment of algorithm prescriptions for (a) delivery frequency 

and (b) for delivery pattern enhances the resilience-efficiency trade-off. Here, we draw the readers’ 

attention to the estimates of frequency adjustment and pattern adjustment in Model 4. Our results 

indicate that we find support for Hypotheses 1 given that the estimator for delivery frequency adjustment 

is positive and significant (β1 = 0.014, p < 0.01). We find similar results for delivery pattern adjustment 

with a positive and significant estimator (β2 = 0.026, p < 0.01). Therefore, human deviation from AI 

algorithm prescription has unfavorable consequences and these positive estimates reflect higher 

additional inputs (and lower outputs) associated with resilience activities leading to the undesirable 

effect. In other words, the wasted inputs and sacrificed outputs related to the response to disruptions 

could have been prevented if stores had followed the algorithm’s prescription. As a robustness check, 

we used a more fine-grained measurement of frequency adjustment by accounting for upward 

adjustments (more deliveries than prescribed) and downward adjustments (fewer deliveries than 

prescribed) and found similar effects in direction and strength. Thus, frequency deviations enhance the 

costs of resilience no matter in which direction they occur.  

In Hypothesis 2, we predict that human adjustments of algorithm prescriptions for (a) delivery frequency 

and (b) for delivery pattern have a weaker detrimental effect on the resilience-efficiency trade-off in 
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stores with higher experience (vs. lower experience). In Model 4 we find support for this hypothesis as 

the estimates for the interaction terms frequency adjustment x experience (β3 = -0.013, p < 0.01) and 

pattern adjustment x experience (β4 = -0.030, p < 0.01) are negative and significant. Importantly, this 

negative interaction effect indicates that with higher team experience, the undesirable effect of 

deviations from algorithm prescriptions is mitigated. In other words, while less knowledgeable 

employees should precisely adhere to prescriptions (as otherwise suboptimal decisions will result), 

deviations of highly experienced employees can be advisable as they might help to better adjust the AI 

solution to store-specific circumstances related to a disruption which experienced employees are able to 

comprehend. Finally, in Hypothesis 3 we predict that human adjustments of algorithm prescriptions for 

(a) delivery frequency and (b) for delivery pattern have a less detrimental effect on resilience-efficiency 

trade-off in stores with more differentiated assortments than in stores with lower differentiation. In 

Model 4 we do not find support for this hypothesis for frequency adjustments (H3a) as the estimate is 

not significant. However, we find support for this hypothesis in the interaction with pattern adjustment 

(H3b) (β6 = -0.010, p < 0.05). Hence, a deviation from the prescribed delivery pattern has a less 

deleterious effect on the resilience-efficiency trade-off in highly differentiated stores. 

Table 3.  Tobit regression results. 

6 Discussion 

Firms face the challenge of enhancing resilience in an efficient way by relying on AI, especially on the 

integration of algorithm prescriptions for decision-making. In this study, we use a large real-world 

dataset of a European grocery retail group to provide empirical insights on how human-AI collaboration 

impacts the efficiency losses associated with resilience activities and under which crucial retail boundary 

conditions the effect of human adjustments is beneficial. 

First of all, we find that employees’ discretionary changes of algorithm prescriptions enhance the 

conflict between resilience and efficiency. This deleterious impact is consistent for both types of 

adjustments (i.e., adjustments of delivery frequency and delivery pattern). In general, these findings are 

supported by studies in literature stating that AI can outperform humans (Jussupow et al., 2024) and 

hence firms profit from conforming to algorithm prescriptions. However, since it is not realistic in the 

future for AI to fully supersede human decisions in all situations and humans may not accept AI 

 Dependent variable: Resilience-efficiency trade-off Hypothesis 

supported?   Model 1 Model 2 Model 3 Model 4 

Independent variables       

Frequency adjustment (FA) 0.017***(0.004) 0.014***(0.004) 0.017***(0.004) 0.014***(0.004) H1a✓ 

Pattern adjustment (PA) 0.032***(0.005) 0.023***(0.004) 0.032***(0.005) 0.026***(0.004) H1b✓ 

      

Interactions      

FA × Experience  -0.012***(0.004)  -0.013***(0.004) H2a✓ 

PA × Experience  -0.030***(0.004)  -0.030***(0.004) H2b✓ 

FA × Differentiation   -0.001(0.004) -0.003(0.004) H3a 

PA × Differentiation   -0.010**(0.005) -0.010**(0.004) H3b✓ 

      

Moderators      

Experience 0.015***(0.002) 0.032***(0.003) 0.014***(0.002) 0.031***(0.003)  

Differentiation 0.006**(0.002) 0.005**(0.002) 0.010***(0.003) 0.009***(0.003)  

      

Controls      

Privatization  -1.013(0.994) -1.809**(0.917) -1.171(0.990) -1.975**(0.913)  

Customer density  -0.002(0.002) -0.003(0.002) -0.003(0.002) -0.003(0.002)  

      

Store-fixed effects  included included included included  

      

Wald test 96.43*** 170.05*** 102.39*** 177.98***  

Note: *𝑝 < 0.1; **𝑝 < 0.05; ***𝑝 < 0.01  



Efficient Resilience Through Algorithm Adjustments 

Thirty-Second European Conference on Information Systems (ECIS 2024), Paphos, Cyprus                             13 

applications if they do not have a voice (Dietvorst et al., 2018), it is important to know in which real-

world settings close interaction between human and algorithm prescription can outperform AI-alone or 

human-alone. We show that humans in the retail context use augmentation capabilities in different ways: 

for determining the optimal delivery frequency and optimal delivery pattern. While several studies 

revealed that in highly controlled environments such as chess games augmenting human capabilities 

through AI capabilities is successful (Jain et al., 2021; Krakowski et al., 2022), we show that also in less 

controlled environments like retail businesses, augmentation of capabilities is possible and effective. 

Additionally, humans can take algorithm prescriptions as a baseline and adjust them or execute the 

prescribed solutions; our results show that the latter might be more promising. Thus, we contribute to 

the extension of the RBV by demonstrating that AI can create a competitive advantage through human 

capabilities to assess and accept algorithm prescriptions. 

Secondly, we also contribute to resilience research. In the resilience context, it is important to know 

which processes in firms make resilience even more costly. While AI-based technologies are seen in the 

literature as a promising driver for resilient systems (e.g., Gupta et al., 2023), our results show that the 

benefit of these technologies occurs if humans closely collaborate with these technologies. 

Furthermore, we investigated different boundary conditions that can alleviate the detrimental effect of 

human deviations from algorithm prescription in terms of higher resilience costs. First, our results show 

that high organizational experience empowers employee capabilities to assess the outcomes of AI (akin 

to AI literacy) and this can mitigate the detrimental effect of human deviations from algorithm 

prescriptions. Thus, our results show that human capital remains important in terms of competitive 

advantage. However, we also confirm that in environments with inexperienced employees, changing AI 

solutions backfires, and humans should execute algorithm prescriptions. Finally, we find that firms with 

high product differentiation can also alleviate the unfavorable effects of deviations from algorithm 

prescription and reduce the costs of resilience activities. If firms have the flexibility to satisfy customer 

needs with a large choice of product variants (e.g., with deep assortments in grocery stores), human 

violations of optimal algorithm prescriptions are less harmful as the detrimental effects can be bolstered 

through these flexible responses to customer needs. 

7 Implications, Limitations, and Future Research 

Our study provides several important implications at the intersection of IS and resilience research, with 

a keen focus on the theoretical and practical implications of AI-driven strategies.  

From a theoretical standpoint, we underscore the importance of examining AI-based technologies – 

which are treated as drivers for resilience in an efficient way (e.g., Belhadi et al., 2024) – within the 

context of human interactions. Specifically, our study is among the first ones to understand how human-

AI collaboration affects efficiency losses associated with resilience activities empirically. By adopting 

the RBV, our exploration aids in discerning the nuances between complementing and substituting 

human capabilities with AI solutions. Through this lens, we provide insights into which forms of human-

AI collaboration lead to competitive advantages and hence which augmentation capabilities matter most. 

Thereby, we shift the traditional RBV focus, highlighting the relevance of novel important human 

capabilities (e.g., augmenting human resources through AI outcomes) (Helfat et al., 2023; Krakowski et 

al., 2022). Second, our study contributes to the advancements of RBV through contingencies that reveal 

when which form of augmentation capabilities is most effective. Therefore, we provide empirical 

insights into various boundary conditions. Specifically, we highlight the beneficial moderating effects 

of organizational experience and product differentiation on shaping the impact of human-AI 

collaboration on the efficiency of resilience activities. By doing so, we are the first to highlight that not 

only the human capital of individual AI users is relevant but also the collective human capital of entire 

teams (e.g., service teams in retail stores). Thus, we advocate for more attention to be paid to the 

collective human capital within both IS and resilience research domains. Additionally, we demonstrate 

that characteristics of the product portfolio, such as product differentiation, play a significant role in 

determining the impact of human-AI collaboration on the efficiency of resilience activities.  
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From a practical standpoint, we offer several implications for managerial practice concerning resilience 

management. First, retail managers should develop human augmentation capabilities (e.g., in terms of 

AI literacy capabilities) to improve resilience without additional efficiency losses by training employees 

on making data-informed decisions that support organizational objectives. Our findings highlight those 

adjustments of algorithmic prescriptions by humans are significant sources of efficiency loss in the 

pursuit of resilience. By implementing feedback mechanisms to monitor the impact of these decisions 

and refine training, managers can minimize these efficiency losses associated with resilience activities. 

Second, our study highlights the significance of organizational experience and product differentiation 

in empowering employees to effectively interact with AI systems to reduce efficiency losses due to 

resilience activities. Thus, managers in retail stores with a rich team experience should leverage this 

asset by facilitating knowledge sharing and promoting AI literacy across the board. For organizations 

with less experience, investing in AI training and development programs becomes paramount to enhance 

the workforce’s capability to engage effectively with AI-based technologies. Lastly, retail stores with a 

high level of product differentiation have an opportunity to mitigate the negative impacts of deviations 

from AI prescriptions. Managers should thus exploit this flexibility to meet diverse customer needs, 

using it as a buffer to absorb potential inefficiencies arising from human-AI collaboration discrepancies. 

This paper has specific limitations that spark strong interest in future research. While examining 

employee experience as a moderating factor, the impact of the experience of managers supervising their 

teams on AI-augmented decisions remains unexplored, presenting a fruitful area for further 

investigation. Second, the quantitative design of our study limits the depth of understanding regarding 

why employees might deviate from algorithmic recommendations, pointing to the need for qualitative 

studies to explore the potential influence of algorithm aversion (Dietvorst et al., 2015). Third, although 

we explicitly position our work as industry-specific research for the retail sector, our industry focus also 

raises questions about the generalizability of our findings to different business contexts, suggesting a 

broader examination of AI’s utility in various industries for future research. Furthermore, although time-

invariant store-related characteristics are captured by the store-fixed effects, our discussion lacks an in-

depth consideration of how organizational factors like culture or technology infrastructure might 

influence the resilience-efficiency trade-off. Future studies could also benefit from incorporating more 

controls for confounding variables to deepen the exploration of these observed relationships. 

Importantly, our research does not capture the longitudinal effects of resilience activities on efficiency 

losses, which may evolve due to varying disruptions over time. Future studies should thus consider 

longitudinal designs to assess the dynamic impacts of efficiency losses associated with resilience 

activities. Altogether, we believe the presented research has the potential to open up a relevant new 

research stream investigating the role of decision support systems (e.g., AI-based tools) in the context 

of resilience management. 
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